-->

26 de fevereiro de 2017

Como determinar a resistência do resistor equivalente de uma associação em série

Associação de resistores em série
No final deste tópico o aluno, por meio de exercícios respondidos, será capaz de entender como os resistores são combinados em série e determinará a resistência do resistor equivalente da associação. Observará que numa associação em série as resistências são combinadas uma em seguida da outra e são percorridos pela mesma corrente. Perceberá que a diferença de potencial (ddp) de toda a associação será equivalente à soma das ddp´s em cada resistor.

1º) Determine a resistência do resistor equivalente (Req) da associação em série de três resistores, conforme a figura abaixo:

Note que os resistores do circuito são ligados um em seguida ao outro, ou seja, R1 segue R2 e R2 segue R3, formando uma fileira de resistores. Esse é o tipo que caracteriza a associação em série de resistores. Para esse exercício ficar bem mais simples não indicamos, por enquanto, nem a voltagem e nem a corrente elétrica do circuito. Indicamos apenas os terminais A e B.

Para determinar o Req (resistor equivalente) dessa associação é muito simples, basta somar as resistências dos resistores associados. Veja como:

$$R_{eq} = R_{1} + R_{2} + R_{3}.$$

Daí, temos que,

$$R_{eq} = 3 + 5 + 7 = 15\Omega.$$

Redesenhando o circuito, obteremos o Req:

Portanto, a resistência do resistor equivalente é igual a 15 ohms.

Observação: esse resistor equivalente (Req), com apenas um resistor, é capaz de substituir a associação dada (com três resistores) na questão. Ele é capaz de produzir o mesmo efeito dos outros três resistores.

2º) Determine a resistência do Req da associação dos resistores, conforme a figura abaixo:

Às vezes, nos livros didáticos, não é indicado os terminais (A e B), mas apenas os pontos nas extremidades do circuito, conforme a figura acima.

Aplicaremos o mesmo procedimento do exercício anterior: basta somar as resistências dos resistores associados. Mas, antes é necessário transformar 3 miliohms em ohms e 4kilohms em ohms. Sabemos que a palavra 'mili' quer dizer 'milésima parte' ou dez elevado a menos 3 e a palavra 'kilo' quer dizer '1000 vezes' ou 10 elevado a 3, portanto,

$$3.10^{-3}\Omega=3.0,001\Omega=0,003\Omega.$$

e

$$4.10^{3}\Omega=4.1000\Omega=4000\Omega.$$

Somando as resistências dos resistores associados, obtemos

$$R_{eq} = R_{1} + R_{2} + R_{3}.$$

Portanto,

$$R_{eq} = 0,003 + 4000 + 5 = 4005,003\Omega.$$

Redesenhando o circuito, temos o Req:

3º) Dada a associação de resistores, conforme figura abaixo, determine a resistência do Req e a intensidade da corrente elétrica em cada resistor.

Note que essa figura é a mesma o exercício 1. Aqui é indicado a corrente elétrica (i) e a voltagem ou diferença de potencial (UA,B = 225 volts) entre os terminais A e B. Essa ddp (diferença de potencial) será útil para o cálculo da intensidade de corrente elétrica (i).

Sabemos do exercício 1 que o Req do circuito que equivale a 

$$R_{eq} = 3 + 5 + 7 = 15\Omega.$$ 

A corrente elétrica (i) que atravessa todos os três resistores será sempre a mesma. Isso é uma característica importante na para associação de resistores em série. Para calcular a corrente elétrica usaremos o termo oriundo da 1ª lei de Ohm (relembre-a em Lei de Ohm - Exercícios resolvidos):

$$U_{A,B}=R_{eq}.i.$$

Daí, obtemos

$$225=15.i\rightarrow i=\frac{225}{15}=15A.$$

Portanto, a intensidade de corrente elétrica do circuito (ou em todos os resistores) equivale a 15 amperes (em inglês) ou 15 ampères (em francês).

Redesenhando o circuito, temos
Note que todo aquele circuito composto por três resistores foi substituído pelo Req capaz de produzir o mesmo efeito dos outros três resistores. Perceba que a corrente elétrica que passa pelo Req é a mesma que passou por cada resistor.

4º) Da questão anterior, calcule a tensão entre os terminais de cada resistor.


Incrementaremos mais ainda nossa figura, pois precisamos visualizar os terminais de cada resistor e batizá-los com qualquer letra. Que tal com a letra C e D?

Sabemos que a intensidade de corrente elétrica é a mesma em todos os resistores. Aplicando o termo oriundo da 1ª lei de Ohm em cada resistor, obtemos

$$U_{A,C}=R_{1}.i\rightarrow U_{A,C}=3.15=45V.$$

 $$U_{C,D}=R_{2}.i\rightarrow U_{C,D}=5.15=75V.$$

  $$U_{D,B}=R_{3}.i\rightarrow U_{D,B}=7.15=105V.$$

Convém observar algo interessante:

$$U_{A,B}=U_{A,C}+  U_{C,D}+ U_{D,B},$$

ou seja, a tensão de toda a associação (no caso, 225V) é igual à soma das tensões em cada resistor (no caso, 45V + 75V + 105V = 225V). Isso é mais uma característica importante da associação de resistores em série.

Bons estudos!

ACESSAR O ESTUDO COMPLETO ►

13 de fevereiro de 2017

A derivada da função logarítmica natural

Função logarítmica naturalNo século XVII o escocês Jonh Napier criou o conceito de logaritmo. A palavra “logaritmo” é originada dos termos gregos “lógos” e “arithmós” que significam, respectivamente, razão e número. O logaritmo de um número é o expoente a que a base, deve ser elevado para produzir este número. As ideias de Napier fundamentou a criação do número de Euler (e). A atual noção de logaritmo é oriunda de Leonhard Euler, que o relacionou com a função exponencial no século XVIII.

A função logarítmica natural é abreviada por ln(x) e chamada de logaritmo natural de x. Geralmente são utilizadas as notações ln(x) para significar loge(x), significando o logaritmo natural de x. Portanto, em vez de escrever a base como e, indicamos o logaritmo da seguinte maneira: loge(x) = ln(x). A base e é um número irracional que equivale aproximadamente 2,718. Não existe logaritmo natural de zero ou de números negativos. Observação: para designar o logaritmo de x na base 10, escreve-se log10(x) ou log(x). No link a seguir você pode aprender mais sobre os logaritmos:


Regra para derivar uma função logarítmica natural


Por definição, a derivada da função logarítmica natural f(x) = ln(x) equivale a f’(x) = 1/x e dado a função f(x) = ln(u), sua derivada será f'(x) = u'/u. Sendo a função logarítmica de base af(x) = loga(x), sua derivada será equivalente a  f’(x) = 1/(x . lna). 

1º) Derive a função de logaritmo natural  f(x) = ln(x).


A derivada de

$$f(x)=ln(x)$$

é definida como

$$f'(x)= \frac{d(ln(x))}{dx} = \frac{1}{x} \cdot$$

Portanto, a derivada da função natural ln(x) equivale a 1/x, sendo que x > 0.

2º) Derive a seguinte função: f(x) = ln(4x + 2).


Para resolver o problema podemos usar a fórmula (I):

$$ \frac{d[ln(u)]}{dx}= \frac{1}{u} \cdot \frac{du}{dx} \cdot$$

Ou podemos, também, usar a fórmula (II) semelhante:

$$ \frac{d[ln(u)]}{dx}=\frac{\frac{du}{dx}}{u}=\frac{u'}{u}\cdot$$

Em ambas as fórmulas, oriundas da Regra da Cadeia, é exigido que u > 0.

Para resolver o problema, atribuímos a u o seguinte valor:

$$u=4x+2.$$ 

Derivando a expressão acima em relação a x:

$$ \frac{d(u)}{dx}= \frac{d(4x+2)}{dx}= \frac{d(4x)}{dx}+ \frac{d(2)}{dx}=4+0=4.$$

Substituindo o valor de u (4x + 2) e de du/dx (4) na fórmula (I), obteremos:

$$ \frac{d[ln(4x+2)]}{dx}= \frac{1}{4x+2} \cdot4 = \frac{4}{4x+2} \cdot$$

Podemos simplificar o resultado, dividindo o numerador e o denominador por 4 e obter

$$ \frac{d[ln(4x+2)]}{dx}= \frac{2}{2x+1}\cdot$$

3º) Derive a seguinte função: f(x) = ln(4x/7).


Atribuímos a u o seguinte valor:

$$u=\frac{4x}{7}\cdot$$

Derivando a expressão acima em relação a x:

$$ \frac{d(u)}{dx}= \frac{d( \frac{4x}{7})}{dx}= \frac{4}{7}.$$

Substituindo o valor de u (4x/7) e de du/dx (4/7) na fórmula (I), obteremos:

$$ \frac{d[ln(\frac{4x}{7})]}{dx}= \frac{1}{\frac{4x}{7}} \cdot \frac{4}{7} =\frac{7}{4x}\cdot\frac{4}{7}=\frac{1}{x}\cdot$$

4º) Derive a seguinte função: f(x) = ln (x2).


Atribuímos a u o seguinte valor:

$$x^{2}.$$ 

Derivando a expressão acima em relação a x:

$$ \frac{d(u)}{dx}= \frac{d(x^{2})}{dx}= 2x.$$

Substituiremos, dessa vez, o valor de u (x2) e de du/dx (2x) na fórmula (II):

 $$ \frac{d[ln(u)]}{dx}= \frac{\frac{du}{dx}}{u}= \frac{u'}{u}\cdot$$

Portanto, obteremos:

$$ \frac{d(ln (x^{2}))}{dx}= \frac{2x}{ x^{2}}= \frac{2}{x}\cdot$$

5º) Derive a seguinte função: f(x) = y = ln (x2 + 3).


Atribuímos a u o seguinte valor:

$$x^{2}+3.$$ 

Portanto,

$$f(x) = y=ln (u).$$

Para resolver o problema, podemos também usar diretamente a fórmula da regra da cadeia:

$$ \frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}\cdot$$

Substituiremos os valores atribuídos a y e a u na regra para obtermos as suas respectivas derivadas:

$$ \frac{dy}{dx}=\frac{d[ln (u)]}{du}\frac{d[x^{2}+3]}{dx}=\frac{1}{u}\cdot2x=\frac{2x}{u}=\frac{2x}{x^{2}+3}\cdot$$

Portanto,

$$ \frac{d[ln(x^{2}+3)]}{dx}= \frac{u'}{u}= \frac {2x}{x^{2}+3}\cdot $$

Derive as seguinte funções:

  • f(x) = ln(2x + 1).
  • f(x) = ln(2x/3).
  • f(x) = ln (x10).
  • f(x) = y = ln (x5 + 2).
Bons estudos.
ACESSAR O ESTUDO COMPLETO ►
© Estudando Física - 2018. Todos os direitos reservados.
Criado por: Elysium.
Tecnologia do Blogger.
imagem-logo